
A Shared-nothing cluster system:

 Postgres-XC

- Amit Khandekar

Welcome

Agenda

● Postgres-XC Configuration

● Shared-nothing architecture applied to Postgres-XC

● Supported functionalities: Present and Future

Configuration (User view)

PG Client

PostgreSQL (XC)

Configuration (Shared-nothing)

Libpq Libpq Libpq

Postgres-XC
(Datanode)

Postgres-XC
(Datanode)

Postgres-XC
(Datanode)

Postgres-XC
(Coordinator)

PG client

Configuration (Synchronous and Symmetric)

PG clientPG client PG client

What is shared ?

GXID, Snapshot
GXID, Snapshot

GXID, Snapshot

GXID, Snapshot

GTM

Shared-nothing Cluster

Benefits

– Scalability and performance (no CPU, disk, memory bottleneck)

– Lower Hardware Cost (Commodity hardware)

– Scope for data redundancy (High availability)

Efforts required

– Accessing non-local data

– Implementing distributed data access

– Node addition/removal requires reorganizing database

Shared-nothing : Scalability

Parallelism

Load-balancing

Data distribution

Data movement

Distributed Tables

Psql

insert into employee values
 (1, ..) , (2, ...), (3, ...) , (4, ...)create table

employee (id int, ...)
DISTRIBUTE by
(id) to node (D1,
D3)

D1 D3
D2

1 ...

3 ...

2 ...

4 ...

Distributed Tables

Psql

select * from employee where id = 3
update employee set where id = 3create table

employee (id int, ...)
DISTRIBUTE by
HASH (id) to node
(D1, D3)

D1 D3
D2

1 ...
3 ...

2 ...
4 ...

Distributed Tables

● Distribute by HASH

● Distribute by MODULO

● Distribute by Round Robin

● Distribute by Range

● Vertical fragmentation

Replicated Tables

Psql

insert into employee

Create table
employee (id
int, ...)
DISTRIBUTE by
REPLICATION to
node (D1, D3)

D1 D3
D2

1 ...
2 ...
3 ...
4 ...

1 ...
2 ...
3 ...
4 ...

insert into employee values
 (1, ..) , (2, ...), (3, ...) , (4, ...)

Replicated tables (Preferred node)

Psql

Select * from
employeeCreate table

employee (id
int, ...) distribute by
REPLICATION to
node (D1, D3)

D1 D3 (Preferred for
C1)

D2

Select * from employee

C1

Parallelism : E.g. Configuration

PG client

Select from
 replicated_table

PG client

Update employee
set ...
 where id = 100

PG client

Select from
 replicated_table

Update employee
set ...
 where id = 100

D1 D2 D3

C1: Preferred: D2 C2: Preferred: D3

Select from
 replicated_table

Select from
 replicated_table

Parallelism

● Inter query

● Intra query

– Intra plan-node

● Single remote table scan done in parallel on datanodes

– Inter plan-node

● Scope for future work
● Join table scans running parallel

Load balancing

● Replicated tables offer good load balancing opportunity

● Preferred node for replicated tables

● XC Randomly chooses data node if no preferred node

● DBA: Data distribution

● Coordinator load balancing

– Requires external application to redirect client
requests to particular coordinator.

Psql select empname from employee
where
not is_old_employee(id) and id = 3;

Reducing data movement

Coordinator quals:
(NOT
is_old_employee(id))

SELECT empname, id
FROM employee
WHERE (id = 3)

Push work to datanodes

Reading Plans

explain verbose select empname from employee
where not is_old_employee(id) and id = 3;

PostgreSQL

 Seq Scan on public.employee (cost=0.00..332.88 rows=4 width=32)
 Output: empname
 Filter: ((employee.id = 3) AND (NOT is_old_employee(employee.id)))

Postgres-XC

 Data Node Scan on employee (cost=0.00..0.00 rows=1000 width=32)
 Output: employee.empname
 Node/s: data_node_2
 Remote query: SELECT empname, id FROM ONLY employee WHERE (id = 3)
 Coordinator quals: (NOT is_old_employee(employee.id))

● Pushable :

– Immutable functions

– Constant expressions

– Join involving at least one common replicated table

– Whole query in certain scenarios (FQS)

– Work in progress

Pushing work to datanodes

Pushing work to datanodes

explain select * from employee join dept on employee.dept = dept.deptid;

 QUERY PLAN

 Hash Join (cost=0.12..0.26 rows=10 width=76)
 Hash Cond: (employee.dept = dept.deptid)
 -> Data Node Scan on employee (cost=0.00..0.00 rows=1000
width=40)
 Node/s: data_node_1, data_node_2
 -> Hash (cost=0.00..0.00 rows=1000 width=36)
 -> Data Node Scan on dept (cost=0.00..0.00 rows=1000 width=36)
 Node/s: data_node_1, data_node_2

Pushing work to datanodes

explain select name from employee join dept on employee.dept = dept.deptid;

 QUERY PLAN

 Data Node Scan on "__REMOTE_FQS_QUERY__" (cost=0.00..0.00 rows=0
width=0)
 Output: employee.name
 Node/s: data_node_1
 Remote query: SELECT employee.name FROM (employee JOIN dept ON
((employee.deptid = dept.deptid)))
(4 rows)

Cost estimates

● Future work

● cost estimation is not cluster-aware

– Data transfer cost not calculated.

● No selectivity info on coordinator

– ANALYZE command updates stats on datanodes.

● Does not update on coordinator.

● Cheapest plan not chosen

● Datanodes have the usual PG cost estimation

Deadlocks

● No cluster-wide deadlock detection

● Updates on replicated tables : deadlocks more likely

– Two parallel updates on same row of replicated table
● Q1 has row lock on node1, Q2 has row lock on node2
● Now Q1 waits on Q2 lock on node2, and Q2 waits on

Q1 lock on node1

– Assign same primary data node on each coordinator
● Might even not need to do this in the future

ACID Properties

GTM

ACID properties (Consistency)

● Consistent view of database throughout
the cluster using Global transaction ID,
and Global Snapshot

● MVCC takes care of the rest.

GXID,
Snapshot,
timestamp,
sequence

GXID,
Snapshot,
timestamp,
sequence

GXID,
Snapshot,
timestamp,
sequence

GXID,
Snapshot,
timestamp,
sequence

GXID,
Snapshot,
timestamp,
sequence

● Global Constraints not supported yet

– Constraint check is done only on individual node; not done
across datanodes.

– Hence, attempt to create table with a constraint that requires
cluster-wide constraint check is not allowed.

– E.g. distributed table not allowed to have unique constraint on a
column unless that column is distribution key, etc.

– Will keep this restriction until we support global constraint check.

● Updating distribution key column not supported

– TIP: Explicitly choose distribution key while creating table

ACID properties (Consistency)

ACID properties (Isolation)

● Transaction isolation
● read committed
● repeatable read
● serializable (>= 9.1) falls back

to repeatable read

● Two-phase protocol

– Coordinator uses this transparently on nodes involved in write
activity.

– This ensure either all nodes commit, or all nodes abort the
transaction; even if a node crashes.

– Always used when explicitly requested from application using
PREPARE TRANSACTION

– Needs to be disabled if temp tables are involved: PG restriction.

● set enforce_two_phase_commit = off

– Because datanodes are PostgreSQL-based servers, datanodes
have their own CLOG, so can be individually recovered after a
crash.

ACID properties (Atomicity and durability)

● pg_prepared_xacts

– All nodes have executed PREPARED TRANSACTION

– Coordinator is about to send abort/commit when a node crashes

– pg_prepared_xacts will show such transactions

● pgxc_clean utility

– Cleans up such transactions on the nodes that are recovered

– Issues COMMIT PREPARED

ACID properties (Durability)

Bottlenecks

Simultaneous
Snapshot
requests

GTM GTM Proxy

Merged
Snapshot
request

Bottlenecks

Pooler Pooler

Pooler

High availability : In-built ?

● Redundancy possible using replicated tables

● Queries not accessing failed node keep on executing

● If a node having all replicated data crashes, data is
available on other nodes

– but it is not HA : coordinator does not automatically failover to
other replicated node.

● Scope for further research

High availability

GTM

GTM Proxy

GTM Standby

Copy of GTM status

gtm_ctl
reconnect

gtm_ctl
promote

PG ReplicationPG Replication
PG Replication PG Replication

PG Replication

High availability

● For automatic failover, integrate Postgres-XC with HA
middleware such as Pacemaker.

– Continuously monitor each component including GTM, coordinator
and datanode

– Write Pacemaker resource agents for Postgres-XC

● Implement start, stop, status, promote, etc

– May still need manual intervention

● ALTER NODE for new IP.
● pgxc_clean()

● Linux-HA Japan team actively working for the above

Recovery

For PITR, the whole cluster should be recovered upto the
same point on all nodes

– CREATE BARRIER 'barrier_id' from any coordinator

● Waits for all the transactions to complete
● Creates an XLOG entry for barrier recovery on each node

– In recovery.conf, set recovery_target_barrier 'barrier_id', just like
we set recovery target xid or timestamp

– Recovery takes place by rolling forward the xlog up to this point:
'barrier_id'

Catalog objects

Queries on catalogs are always run locally.

All nodes have the same copy of catalogs.

– DDL statements are propagated to all nodes.

Views/Rules

– Rule rewrite happens on coordinator

Sequences

– Fetched from GTM

User Functions

– Definitions are everywhere. Coordinator chooses whether it should be called
on datanode.

System tables

– Has local information.

Triggers (Under development)

Cluster initialization

CREATE NODE C2 WITH (HOST =
'238.12.34.11', type = 'coordinator');

CREATE NODE D1 WITH (HOST =
'localhost', type = 'datanode', preferred);
CREATE NODE D2 WITH (HOST =
'238.12.88.11', type = 'datanode');

initdb ... –nodename=D1;
pg_ctl start -Z datanode

CREATE NODE C1 WITH (HOST =
'238.12.34.12', type = 'coordinator');

CREATE NODE D1 WITH (HOST =
'238.12.88.12', type = 'datanode');
CREATE NODE D2 WITH (HOST =
'localhost', type = 'datanode', preferred);

C1

D1 D2

C2

initdb ... –nodename=D2;
pg_ctl start -Z datanode

GTM

gtm_ctl start -Z gtm

Cluster management

● Each coordinator needs to run CREATE NODE for all
other nodes including other coordinators.

● Node configuration is static. Should be changed
offline.

– pg_dump from any one coordinator

– Stop cluster, add and reinitialize all nodes again, including
new node

– pg_restore on any coordinator

● Online node addition/removal (TODO)

Cluster management

● Online data redistribution

– Used to change distribution strategy

● ALTER TABLE tab1 DISTRIBUTE BY REPLICATION ...

– Can also be used to redistribute the data onto newly added
nodes.

● Online data redistribution concurrently (TODO)

– ALTER TABLE … CONCURRENTLY

Features support (< 1.0)

● Postgres-XC 0.9.6

– HAVING clause

– GROUP BY optimization for pushing down

– Temporary objects

– PREPARE/EXECUTE

● Postgres-XC 0.9.7

– Cluster node management with DDLs

– SELECT INTO/CREATE TABLE AS

– INSERT … SELECT

– Window functions

– Views, correlated subquery, Common table expression

Features support (>= 1.0)

● Postgres-XC 1.0

– Based on PostgreSQL 9.1

– Stabilization

– SERIAL types

– TABLESPACE

– Advisory locks

– Fast Query Shipping

– Cursors

● Development branch

– Merged with PostgreSQL 9.2

– Data redistribution with ALTER TABLE

– Planner improvements

– RETURNING clause

– WHERE CURRENT OF

– TRIGGERS

Future

● Online node addition and removal

● Ongoing query processing improvements

● SAVEPOINT

● Serializable Snapshot Isolation

● HA improvements

… and many others

Thank you

● Project Web Page:

– http://postgres-xc.sourceforge.net/

● Help at:

– postgres-xc-general@lists.sourceforge.net

– postgres-xc-developers@lists.sourceforge.net

http://postgres-xc.sourceforge.net/
mailto:postgres-xc-general@lists.sourceforge.net
mailto:postgres-xc-developers@lists.sourceforge.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

