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Welcome



Agenda

● Postgres-XC Configuration

● Shared-nothing architecture applied to Postgres-XC

● Supported functionalities: Present and Future



Configuration (User view)

PG Client

PostgreSQL (XC)



Configuration (Shared-nothing)

Libpq Libpq Libpq

Postgres-XC 
(Datanode)

Postgres-XC 
(Datanode)

Postgres-XC 
(Datanode)

Postgres-XC 
(Coordinator)

PG client



Configuration (Synchronous and Symmetric)

PG clientPG client PG client



What is shared ?

GXID, Snapshot
GXID, Snapshot

GXID, Snapshot

GXID, Snapshot

GTM



Shared-nothing Cluster

Benefits

– Scalability and performance (no CPU, disk, memory bottleneck)

– Lower Hardware Cost (Commodity hardware)

– Scope for data redundancy (High availability)

Efforts required

– Accessing non-local data

– Implementing distributed data access

– Node addition/removal requires reorganizing database



Shared-nothing : Scalability

Parallelism

Load-balancing

Data distribution

Data movement



Distributed Tables

Psql

insert into employee values
 (1, ..) , (2, ...), (3, ...) , (4, ...)create table 

employee (id int, ...) 
DISTRIBUTE by 
(id) to node (D1, 
D3)

D1 D3
D2

1 ...

3 ...

2 ...

4 ...



Distributed Tables

Psql

select * from employee where id = 3
update employee set .... where id = 3create table 

employee (id int, ...) 
DISTRIBUTE by 
HASH (id) to node 
(D1, D3)

D1 D3
D2

1 ...
3 ...

2 ...
4 ...



Distributed Tables

● Distribute by HASH

● Distribute by MODULO

● Distribute by Round Robin

● Distribute by Range

● Vertical fragmentation



Replicated Tables

Psql

insert into employee

Create table 
employee (id 
int, ...) 
DISTRIBUTE by 
REPLICATION to 
node (D1, D3)

D1 D3
D2

1 ...
2 ...
3 ...
4 ...

1 ...
2 ...
3 ...
4 ...

insert into employee values
 (1, ..) , (2, ...), (3, ...) , (4, ...)



Replicated tables (Preferred node)

Psql

Select * from 
employeeCreate table 

employee (id 
int, ...) distribute by 
REPLICATION  to 
node (D1, D3)

D1 D3 (Preferred for 
C1)

D2

Select * from employee

C1



Parallelism : E.g. Configuration

PG client

Select  from
 replicated_table

PG client

Update employee
set ...
 where id = 100

PG client

Select  from
 replicated_table

Update employee
set ...
 where id = 100

D1 D2 D3

C1: Preferred:  D2 C2: Preferred:  D3

Select  from
 replicated_table

Select  from
 replicated_table



Parallelism

● Inter query

● Intra query

– Intra plan-node

● Single remote table scan done in parallel on datanodes

– Inter plan-node

● Scope for future work
● Join table scans running parallel



Load balancing

● Replicated tables offer good load balancing opportunity

● Preferred node for replicated tables

● XC Randomly chooses data node if no preferred node

● DBA: Data distribution

● Coordinator load balancing

– Requires external application to redirect client 
requests to particular coordinator.



Psql  select empname from employee 
where 
not is_old_employee(id) and id = 3;

Reducing data movement

Coordinator quals: 
(NOT 
is_old_employee(id))

SELECT empname, id 
FROM employee 
WHERE (id = 3)

Push work to datanodes



Reading Plans

explain verbose select empname from employee 
where not is_old_employee(id) and id = 3;

PostgreSQL

 Seq Scan on public.employee  (cost=0.00..332.88 rows=4 width=32)
   Output: empname
   Filter: ((employee.id = 3) AND (NOT is_old_employee(employee.id)))

Postgres-XC

 Data Node Scan on employee  (cost=0.00..0.00 rows=1000 width=32)
   Output: employee.empname
   Node/s: data_node_2
   Remote query: SELECT empname, id FROM ONLY employee WHERE (id = 3)
   Coordinator quals: (NOT is_old_employee(employee.id))



● Pushable :

– Immutable functions

– Constant expressions

– Join involving at least one common replicated table

– Whole query in certain scenarios (FQS)

– Work in progress

Pushing work to datanodes



Pushing work to datanodes

explain select * from employee join dept  on employee.dept = dept.deptid;

                                           QUERY PLAN                                            
-------------------------------------------------------------------------------------------------
 Hash Join  (cost=0.12..0.26 rows=10 width=76)
   Hash Cond: (employee.dept = dept.deptid)
   ->  Data Node Scan on employee   (cost=0.00..0.00 rows=1000 
width=40)
         Node/s: data_node_1, data_node_2
   ->  Hash  (cost=0.00..0.00 rows=1000 width=36)
         ->  Data Node Scan on dept   (cost=0.00..0.00 rows=1000 width=36)
               Node/s: data_node_1, data_node_2



Pushing work to datanodes

explain select name from employee join dept  on employee.dept = dept.deptid;

                                             QUERY PLAN                                              
-----------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 
width=0)
   Output: employee.name
   Node/s: data_node_1
   Remote query: SELECT employee.name FROM (employee JOIN dept ON 
((employee.deptid = dept.deptid)))
(4 rows)



Cost estimates

● Future work

● cost estimation is not cluster-aware

– Data transfer cost not calculated.

● No selectivity info on coordinator

– ANALYZE command updates stats on datanodes.

● Does not update on coordinator.

● Cheapest plan not chosen

● Datanodes have the usual PG cost estimation



Deadlocks

● No cluster-wide deadlock detection

● Updates on replicated tables :  deadlocks more likely

– Two parallel updates on same row of replicated table 
● Q1 has row lock on node1, Q2 has row lock on node2
● Now Q1 waits on Q2 lock on node2, and Q2 waits on 

Q1 lock on node1

– Assign same primary data node on each coordinator
● Might even not need to do this in the future



ACID Properties



GTM

ACID properties (Consistency)

● Consistent view of database throughout 
the cluster using Global transaction ID, 
and Global Snapshot

● MVCC takes care of the rest.

GXID, 
Snapshot, 
timestamp, 
sequence

GXID, 
Snapshot, 
timestamp, 
sequence

GXID, 
Snapshot, 
timestamp, 
sequence

GXID, 
Snapshot, 
timestamp, 
sequence

GXID, 
Snapshot, 
timestamp, 
sequence



● Global Constraints not supported yet

– Constraint check is done only on individual node; not done 
across datanodes.

– Hence, attempt to create table with a constraint that requires 
cluster-wide constraint check is not allowed.

– E.g. distributed table not allowed to have unique constraint on a 
column unless that column is distribution key, etc.

– Will keep this restriction until we support global constraint check.

● Updating distribution key column not supported

– TIP: Explicitly choose distribution key while creating table

ACID properties (Consistency)



ACID properties (Isolation)

● Transaction isolation
● read committed 
● repeatable read
● serializable (>= 9.1) falls back 

to repeatable read



● Two-phase protocol

– Coordinator uses this transparently on nodes involved in write 
activity.

– This ensure either all nodes commit, or all nodes abort the 
transaction;  even if a node crashes.

– Always used when explicitly requested from application using 
PREPARE TRANSACTION

– Needs to be disabled if temp tables are involved: PG restriction.

● set enforce_two_phase_commit = off

– Because datanodes are PostgreSQL-based servers, datanodes 
have their own CLOG, so can be individually recovered after a 
crash.

ACID properties (Atomicity and durability)



● pg_prepared_xacts

– All nodes have executed PREPARED TRANSACTION

– Coordinator is about to send abort/commit when a node crashes

– pg_prepared_xacts will show such transactions 

● pgxc_clean utility

– Cleans up such transactions on the nodes that are recovered

– Issues COMMIT PREPARED

ACID properties (Durability)



Bottlenecks

Simultaneous 
Snapshot 
requests

GTM GTM Proxy

Merged 
Snapshot 
request



Bottlenecks

Pooler Pooler

Pooler



High availability : In-built ?

● Redundancy possible using replicated tables

● Queries not accessing failed node keep on executing

● If a node having all replicated data crashes, data is 
available on other nodes

– but it is not HA : coordinator does not automatically failover to 
other replicated node.

● Scope for further research



High availability

GTM

GTM Proxy

GTM Standby

Copy of GTM status 

gtm_ctl 
reconnect

gtm_ctl 
promote

PG ReplicationPG Replication
PG Replication PG Replication

PG Replication



High availability

● For automatic failover, integrate Postgres-XC with HA 
middleware such as Pacemaker.

– Continuously monitor each component including GTM, coordinator 
and datanode

– Write Pacemaker resource agents for Postgres-XC

● Implement start, stop, status, promote, etc

– May still need manual intervention

● ALTER NODE for new IP.
● pgxc_clean()

● Linux-HA Japan team actively working for the above



Recovery

For PITR, the whole cluster should be recovered upto the 
same point on all nodes

– CREATE BARRIER 'barrier_id' from any coordinator

● Waits for all the transactions to complete
● Creates an XLOG entry for barrier recovery on each node

– In recovery.conf, set recovery_target_barrier 'barrier_id', just like 
we set recovery target xid or timestamp

– Recovery takes place by rolling forward the xlog up to this point: 
'barrier_id'



Catalog objects

Queries on catalogs are always run locally.

All nodes have the same copy of catalogs.

– DDL statements are propagated to all nodes.

Views/Rules

– Rule rewrite happens on coordinator

Sequences

– Fetched from GTM

User Functions

– Definitions are everywhere. Coordinator chooses whether it should be called 
on datanode.

System tables

– Has local information.

Triggers (Under development)



Cluster initialization

CREATE NODE C2 WITH (HOST = 
'238.12.34.11', type = 'coordinator');

CREATE NODE D1 WITH (HOST = 
'localhost', type = 'datanode', preferred);
CREATE NODE D2 WITH (HOST = 
'238.12.88.11', type = 'datanode');

initdb ... –nodename=D1;
pg_ctl start -Z datanode

CREATE NODE C1 WITH (HOST = 
'238.12.34.12', type = 'coordinator');

CREATE NODE D1 WITH (HOST = 
'238.12.88.12', type = 'datanode');
CREATE NODE D2 WITH (HOST = 
'localhost', type = 'datanode', preferred);

C1

D1 D2

C2

initdb ... –nodename=D2;
pg_ctl start -Z datanode

GTM

gtm_ctl start -Z gtm



Cluster management

● Each coordinator needs to run CREATE NODE for all 
other nodes including other coordinators.

● Node configuration is static. Should be changed 
offline.

– pg_dump from any one coordinator

– Stop cluster, add and reinitialize all nodes again, including 
new node

– pg_restore on any coordinator

● Online node addition/removal (TODO)



Cluster management

● Online data redistribution

– Used to change distribution strategy

● ALTER TABLE tab1 DISTRIBUTE BY REPLICATION ...

– Can also be used to redistribute the data onto newly added 
nodes.

● Online data redistribution concurrently (TODO)

– ALTER TABLE … CONCURRENTLY



Features support (< 1.0)

● Postgres-XC 0.9.6

– HAVING clause

– GROUP BY optimization for pushing down

– Temporary objects

– PREPARE/EXECUTE

● Postgres-XC 0.9.7

– Cluster node management with DDLs

– SELECT INTO/CREATE TABLE AS

– INSERT … SELECT

– Window functions

– Views, correlated subquery, Common table expression



Features support (>= 1.0)

● Postgres-XC 1.0

– Based on PostgreSQL 9.1

– Stabilization

– SERIAL types

– TABLESPACE

– Advisory locks

– Fast Query Shipping

– Cursors

● Development branch

– Merged with PostgreSQL 9.2

– Data redistribution with ALTER TABLE

– Planner improvements

– RETURNING clause

– WHERE CURRENT OF 

– TRIGGERS



Future

● Online node addition and removal

● Ongoing query processing improvements

● SAVEPOINT

● Serializable Snapshot Isolation

● HA improvements

… and many others



Thank you

● Project Web Page:

– http://postgres-xc.sourceforge.net/

● Help at:

– postgres-xc-general@lists.sourceforge.net

– postgres-xc-developers@lists.sourceforge.net

http://postgres-xc.sourceforge.net/
mailto:postgres-xc-general@lists.sourceforge.net
mailto:postgres-xc-developers@lists.sourceforge.net
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